Involutions on Standard Young Tableaux and Divisors on Metric Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involutions on Standard Young Tableaux and Divisors on Metric Graphs

We elaborate upon a bijection discovered by Cools, Draisma, Payne, and Robeva in [CDPR12] between the set of rectangular standard Young tableaux and the set of equivalence classes of chip configurations on certain metric graphs under the relation of linear equivalence. We present an explicit formula for computing the v0-reduced divisors (representatives of the equivalence classes) associated to...

متن کامل

Hopf Structures on Standard Young Tableaux

We review the Poirier-Reutenauer Hopf structure on Standard Young Tableaux and show that it is a distinguished member of a family of Hopf structures. The family in question is related to deformed parastatistics. In this paper K is a field of characteristic zero and all vector spaces are over K. A K[S]-module is a collection of K[Sr]-modules of the symmetric groups Sr. A H(q)-module is a collect...

متن کامل

On Descents in Standard Young Tableaux

In this paper, explicit formulae for the expectation and the variance of descent functions on random standard Young tableaux are presented. Using these, it is shown that the normalized variance, V/E2, is bounded if and only if a certain inequality relating tableau shape to the descent function holds.

متن کامل

A Combinatorial Setting for Involutions and Semistandard Young Tableaux

We establish a combinatorial connection between the sequence (yn,k) counting the involutions on n letters with k descents and the sequence (an,k) enumerating the semistandard Young tableaux on n cells with k symbols. This allows us to exhibit an explicit formula for the integers yn,k and find combinatorial properties of the two sequences. In particular, we show that the sequences (yn,k) are not...

متن کامل

Properties of four partial orders on standard Young tableaux

Let SY Tn be the set of all standard Young tableaux with n cells. After recalling the definitions of four partial orders, the weak, KL, geometric and chain orders on SY Tn and some of their crucial properties, we prove three main results: • Intervals in any of these four orders essentially describe the product in a Hopf algebra of tableaux defined by Poirier and Reutenauer. • The map sending a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2013

ISSN: 1077-8926

DOI: 10.37236/2590